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Part 1

Weight Transfer
Most autocrossers and race drivers learn early in their careers the importance
of balancing a car. Learning to do it consistently and automatically is one
essential part of becoming a truly good driver. While the skills for balancing
a car are commonly taught in drivers’ schools, the rationale behind them is
not usually adequately explained. That rationale comes from simple physics.
Understanding the physics of driving not only helps one be a better driver,
but increases one’s enjoyment of driving as well. If you know the deep reasons
why you ought to do certain things you will remember the things better and
move faster toward complete internalization of the skills.

Balancing a car is controlling weight transfer using throttle, brakes, and
steering. This article explains the physics of weight transfer. You will often
hear instructors and drivers say that applying the brakes shifts weight to
the front of a car and can induce oversteer. Likewise, accelerating shifts
weight to the rear, inducing understeer, and cornering shifts weight to the
opposite side, unloading the inside tires. But why does weight shift during
these maneuvers? How can weight shift when everything is in the car bolted
in and strapped down? Briefly, the reason is that inertia acts through the
center of gravity (CG) of the car, which is above the ground, but adhesive
forces act at ground level through the tire contact patches. The effects of
weight transfer are proportional to the height of the CG off the ground. A
flatter car, one with a lower CG, handles better and quicker because weight
transfer is not so drastic as it is in a high car.

The rest of this article explains how inertia and adhesive forces give rise to
weight transfer through Newton’s laws. The article begins with the elements
and works up to some simple equations that you can use to calculate weight
transfer in any car knowing only the wheelbase, the height of the CG, the
static weight distribution, and the track, or distance between the tires across
the car. These numbers are reported in shop manuals and most journalistic
reviews of cars.

Most people remember Newton’s laws from school physics. These are
fundamental laws that apply to all large things in the universe, such as cars.
In the context of our racing application, they are:

The first law: a car in straight-line motion at a constant speed
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will keep such motion until acted on by an external force. The only
reason a car in neutral will not coast forever is that friction, an external force,
gradually slows the car down. Friction comes from the tires on the ground
and the air flowing over the car. The tendency of a car to keep moving the
way it is moving is the inertia of the car, and this tendency is concentrated
at the CG point.

The second law: When a force is applied to a car, the change in
motion is proportional to the force divided by the mass of the car.
This law is expressed by the famous equation F = ma, where F is a force,
m is the mass of the car, and a is the acceleration, or change in motion, of
the car. A larger force causes quicker changes in motion, and a heavier car
reacts more slowly to forces. Newton’s second law explains why quick cars
are powerful and lightweight. The more F and the less m you have, the more
a you can get.

The third law: Every force on a car by another object, such as the
ground, is matched by an equal and opposite force on the object
by the car. When you apply the brakes, you cause the tires to push forward
against the ground, and the ground pushes back. As long as the tires stay
on the car, the ground pushing on them slows the car down.

Let us continue analyzing braking. Weight transfer during accelerating
and cornering are mere variations on the theme. We won’t consider subtleties
such as suspension and tire deflection yet. These effects are very important,
but secondary. The figure shows a car and the forces on it during a “one g”
braking maneuver. One g means that the total braking force equals the
weight of the car, say, in pounds.
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In this figure, the black and white “pie plate” in the center is the CG.
G is the force of gravity that pulls the car toward the center of the Earth.
This is the weight of the car; weight is just another word for the force of
gravity. It is a fact of Nature, only fully explained by Albert Einstein, that
gravitational forces act through the CG of an object, just like inertia. This
fact can be explained at deeper levels, but such an explanation would take
us too far off the subject of weight transfer.

Lf is the lift force exerted by the ground on the front tire, and Lr is the
lift force on the rear tire. These lift forces are as real as the ones that keep
an airplane in the air, and they keep the car from falling through the ground
to the center of the Earth.

We don’t often notice the forces that the ground exerts on objects because
they are so ordinary, but they are at the essence of car dynamics. The reason
is that the magnitude of these forces determine the ability of a tire to stick,
and imbalances between the front and rear lift forces account for understeer
and oversteer. The figure only shows forces on the car, not forces on the
ground and the CG of the Earth. Newton’s third law requires that these
equal and opposite forces exist, but we are only concerned about how the
ground and the Earth’s gravity affect the car.

If the car were standing still or coasting, and its weight distribution were
50-50, then Lf would be the same as Lr. It is always the case that Lf plus Lr
equals G, the weight of the car. Why? Because of Newton’s first law. The
car is not changing its motion in the vertical direction, at least as long as it
doesn’t get airborne, so the total sum of all forces in the vertical direction
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must be zero. G points down and counteracts the sum of Lf and Lr, which
point up.

Braking causes Lf to be greater than Lr. Literally, the “rear end gets
light,” as one often hears racers say. Consider the front and rear braking
forces, Bf and Br, in the diagram. They push backwards on the tires, which
push on the wheels, which push on the suspension parts, which push on the
rest of the car, slowing it down. But these forces are acting at ground level,
not at the level of the CG. The braking forces are indirectly slowing down
the car by pushing at ground level, while the inertia of the car is ‘trying’ to
keep it moving forward as a unit at the CG level.

The braking forces create a rotating tendency, or torque, about the CG.
Imagine pulling a table cloth out from under some glasses and candelabra.
These objects would have a tendency to tip or rotate over, and the tendency
is greater for taller objects and is greater the harder you pull on the cloth.
The rotational tendency of a car under braking is due to identical physics.

The braking torque acts in such a way as to put the car up on its nose.
Since the car does not actually go up on its nose (we hope), some other forces
must be counteracting that tendency, by Newton’s first law. G cannot be
doing it since it passes right through the cetner of gravity. The only forces
that can counteract that tendency are the lift forces, and the only way they
can do so is for Lf to become greater than Lr. Literally, the ground pushes
up harder on the front tires during braking to try to keep the car from tipping
forward.

By how much does Lf exceed Lr? The braking torque is proportional
to the sum of the braking forces and to the height of the CG. Let’s say
that height is 20 inches. The counterbalancing torque resisting the braking
torque is proportional to Lf and half the wheelbase (in a car with 50-50
weight distribution), minus Lr times half the wheelbase since Lr is helping
the braking forces upend the car. Lf has a lot of work to do: it must resist
the torques of both the braking forces and the lift on the rear tires. Let’s
say the wheelbase is 100 inches. Since we are braking at one g, the braking
forces equal G, say, 3200 pounds. All this is summarized in the following
equations:

3200 lbs times 20 inches = Lf times 50 inches− Lr times 50 inches

Lf + Lr = 3200 lbs (this is always true)

With the help of a little algebra, we can find out that
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Lf = 1600 + 3200/5 = 2240 lbs

Lr = 1600− 3200/5 = 960 lbs

Thus, by braking at one g in our example car, we add 640 pounds of load
to the front tires and take 640 pounds off the rears! This is very pronounced
weight transfer.

By doing a similar analysis for a more general car with CG height of h,
wheelbase w, weight G, static weight distribution d expressed as a fraction
of weight in the front, and braking with force B, we can show that

Lf = dG+Bh/w

Lr = (1− d)G−Bh/w

These equations can be used to calculate weight transfer during acceler-
ation by treating acceleration force as negative braking force. If you have
acceleration figures in gees, say from a G-analyst or other device, just multi-
ply them by the weight of the car to get acceleration forces (Newton’s second
law!). Weight transfer during cornering can be analyzed in a similar way,
where the track of the car replaces the wheelbase and d is always 50% (un-
less you account for the weight of the driver). Those of you with science or
engineering backgrounds may enjoy deriving these equations for yourselves.
The equations for a car doing a combination of braking and cornering, as
in a trail braking maneuver, are much more complicated and require some
mathematical tricks to derive.

Now you know why weight transfer happens. The next topic that comes
to mind is the physics of tire adhesion, which explains how weight transfer
can lead to understeer and oversteer conditions.



Part 2

Keeping Your Tires Stuck to
the Ground
In last month’s article, we explained the physics behind weight transfer. That
is, we explained why braking shifts weight to the front of the car, accelerating
shifts weight to the rear, and cornering shifts weight to the outside of a curve.
Weight transfer is a side-effect of the tires keeping the car from flipping over
during maneuvers. We found out that a one G braking maneuver in our
3200 pound example car causes 640 pounds to transfer from the rear tires to
the front tires. The explanations were given directly in terms of Newton’s
fundamental laws of Nature.

This month, we investigate what causes tires to stay stuck and what
causes them to break away and slide. We will find out that you can make a
tire slide either by pushing too hard on it or by causing weight to transfer off
the tire by your control inputs of throttle, brakes, and steering. Conversely,
you can cause a sliding tire to stick again by pushing less hard on it or by
tranferring weight to it. The rest of this article explains all this in term of
(you guessed it) physics.

This knowledge, coupled with a good ‘instinct’ for weight transfer, can
help a driver predict the consequences of all his or her actions and develop
good instincts for staying out of trouble, getting out of trouble when it comes,
and driving consistently at ten tenths. It is said of Tazio Nuvolari, one of
the greatest racing drivers ever, that he knew at all times while driving the
weight on each of the four tires to within a few pounds. He could think, while
driving, how the loads would change if he lifted off the throttle or turned the
wheel a little more, for example. His knowledge of the physics of racing
enabled him to make tiny, accurate adjustments to suit every circumstance,
and perhaps to make these adjustments better than his competitors. Of
course, he had a very fast brain and phenomenal reflexes, too.

I am going to ask you to do a few physics “lab” experiments with me to
investigate tire adhesion. You can actually do them, or you can just follow
along in your imagination. First, get a tire and wheel off your car. If you
are a serious autocrosser, you probably have a few loose sets in your garage.
You can do the experiments with a heavy box or some object that is easier
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to handle than a tire, but the numbers you get won’t apply directly to tires,
although the principles we investigate will apply.

Weigh yourself both holding the wheel and not holding it on a bathroom
scale. The difference is the weight of the tire and wheel assembly. In my
case, it is 50 pounds (it would be a lot less if I had those $3000 Jongbloed
wheels! Any sponsors reading?). Now put the wheel on the ground or on a
table and push sideways with your hand against the tire until it slides. When
you push it, push down low near the point where the tire touches the ground
so it doesn’t tip over.

The question is, how hard did you have to push to make the tire slide?
You can find out by putting the bathroom scale between your hand and the
tire when you push. This procedure doesn’t give a very accurate reading of
the force you need to make the tire slide, but it gives a rough estimate. In
my case, on the concrete walkway in front of my house, I had to push with 85
pounds of force (my neighbors don’t bother staring at me any more; they’re
used to my strange antics). On my linoleum kitchen floor, I only had to push
with 60 pounds (but my wife does stare at me when I do this stuff in the
house). What do these numbers mean?

They mean that, on concrete, my tire gave me 85/50 = 1.70 gees of
sideways resistance before sliding. On a linoleum race course (ahem!), I
would only be able to get 60/50 = 1.20G. We have directly experienced the
physics of grip with our bare hands. The fact that the tire resists sliding,
up to a point, is called the grip phenomenon. If you could view the interface
between the ground and the tire with a microscope, you would see complex
interactions between long-chain rubber molecules bending, stretching, and
locking into concrete molecules creating the grip. Tire researchers look into
the detailed workings of tires at these levels of detail.

Now, I’m not getting too excited about being able to achieve 1.70G cor-
nering in an autocross. Before I performed this experiment, I frankly ex-
pected to see a number below 1G. This rather unbelievable number of 1.70G
would certainly not be attainable under driving conditions, but is still a tes-
timony to the rather unbelievable state of tire technology nowadays. Thirty
years ago, engineers believed that one G was theoretically impossible from
a tire. This had all kinds of consequences. It implied, for example, that
dragsters could not possibly go faster than 200 miles per hour in a quarter
mile: you can go

√
2ax = 198.48 mph if you can keep 1G acceleration all the

way down the track. Nowadays, drag racing safety watchdogs are working
hard to keep the cars under 300 mph; top fuel dragsters launch at more than
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3 gees.
For the second experiment, try weighing down your tire with some bal-

last. I used a couple of dumbells slung through the center of the wheel with
rope to give me a total weight of 90 pounds. Now, I had to push with 150
pounds of force to move the tire sideways on concrete. Still about 1.70G. We
observe the fundamental law of adhesion: the force required to slide a tire is
proportional to the weight supported by the tire. When your tire is on the
car, weighed down with the car, you cannot push it sideways simply because
you can’t push hard enough.

The force required to slide a tire is called the adhesive limit of the tire, or
sometimes the stiction, which is a slang combination of “stick” and “friction.”
This law, in mathematical form, is

F ≤ µW

where F is the force with which the tire resists sliding; µ is the coefficient of
static friction or coefficient of adhesion; and W is the weight or vertical load
on the tire contact patch. Both F and W have the units of force (remember
that weight is the force of gravity), so µ is just a number, a proportionality
constant. This equation states that the sideways force a tire can withstand
before sliding is less than or equal to µ times W . Thus, µW is the maximum
sideways force the tire can withstand and is equal to the stiction. We often
like to speak of the sideways acceleration the car can achieve, and we can
convert the stiction force into acceleration in gees by dividing by W , the
weight of the car. µ can thus be measured in gees.

The coefficient of static friction is not exactly a constant. Under driving
conditions, many effects come into play that reduce the stiction of a good
autocross tire to somewhere around 1.10G. These effects are deflection of the
tire, suspension movement, temperature, inflation pressure, and so on. But
the proportionality law still holds reasonably true under these conditions.
Now you can see that if you are cornering, braking, or accelerating at the
limit, which means at the adhesive limit of the tires, any weight transfer will
cause the tires unloaded by the weight transfer to pass from sticking into
sliding.

Actually, the transition from sticking ‘mode’ to sliding mode should not
be very abrupt in a well-designed tire. When one speaks of a “forgiving”
tire, one means a tire that breaks away slowly as it gets more and more force
or less and less weight, giving the driver time to correct. Old, hard tires are,
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generally speaking, less forgiving than new, soft tires. Low-profile tires are
less forgiving than high-profile tires. Slicks are less forgiving than DOT tires.
But these are very broad generalities and tires must be judged individually,
usually by getting some word-of-mouth recommendations or just by trying
them out in an autocross. Some tires are so unforgiving that they break away
virtually without warning, leading to driver dramatics usually resulting in a
spin. Forgiving tires are much easier to control and much more fun to drive
with.

“Driving by the seat of your pants” means sensing the slight changes in
cornering, braking, and acceleration forces that signal that one or more tires
are about to slide. You can sense these change literally in your seat, but
you can also feel changes in steering resistance and in the sounds the tires
make. Generally, tires ‘squeak’ when they are nearing the limit, ‘squeal’ at
the limit, and ‘squall’ over the limit. I find tire sounds very informative and
always listen to them while driving.

So, to keep your tires stuck to the ground, be aware that accelerating
gives the front tires less stiction and the rear tires more, that braking gives
the front tire more stiction and the rear tires less, and that cornering gives
the inside tires less stiction and the outside tires more. These facts are due to
the combination of weight transfer and the grip phenomenon. Finally, drive
smoothly, that is, translate your awareness into gentle control inputs that
always keep appropriate tires stuck at the right times. This is the essential
knowledge required for car control, and, of course, is much easier said than
done. Later articles will use the knowledge we have accumulated so far to
explain understeer, oversteer, and chassis set-up.



Part 3

Basic Calculations
In the last two articles, we plunged right into some relatively complex issues,
namely weight transfer and tire adhesion. This month, we regroup and review
some of the basic units and dimensions needed to do dynamical calculations.
Eventually, we can work up to equations sufficient for a full-blown computer
simulation of car dynamics. The equations can then be ‘doctored’ so that
the computer simulation will run fast enough to be the core of an autocross
computer game. Eventually, we might direct this series of articles to show
how to build such a game in a typical microcomputer programming language
such as C or BASIC, or perhaps even my personal favorite, LISP. All of this is
in keeping with the spirit of the series, the Physics of Racing, because so much
of physics today involves computing. Software design and programming are
essential skills of the modern physicist, so much so that many of us become
involved in computing full time.

Physics is the science of measurement. Perhaps you have heard of highly
abstract branches of physics such as quantum mechanics and relativity, in
which exotic mathematics is in the forefront. But when theories are taken
to the laboratory (or the race course) for testing, all the mathematics must
boil down to quantities that can be measured. In racing, the fundamental
quantities are distance, time, and mass. This month, we will review basic
equations that will enable you to do quick calculations in your head while
cooling off between runs. It is very valuable to develop a skill for estimating
quantities quickly, and I will show you how.

Equations that don’t involve mass are called kinematic. The first kine-
matic equation relates speed, time, and distance. If a car is moving at a
constant speed or velocity, v, then the distance d it travels in time t is

d = vt

or velocity times time. This equation really expresses nothing more than the
definition of velocity.

If we are to do mental calculations, the first hurdle we must jump comes
from the fact that we usually measure speed in miles per hour (mph), but
distance in feet and time in seconds. So, we must modify our equation with
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a conversion factor, like this

d (feet) = v
miles

hour
t (seconds)

5280 feet/mile

3600 seconds/hour

If you “cancel out” the units parts of this equation, you will see that
you get feet on both the left and right hand sides, as is appropriate, since
equality is required of any equation. The conversion factor is 5280/3600,
which happens to equal 22/15. Let’s do a few quick examples. How far
does a car go in one second (remember, say, “one-one-thousand, two-one-
thousand,” etc. to yourself to count off seconds)? At fifteen mph, we can see
that we go

d = 15 mph times 1 sec times 22/15 = 22 feet

or about 1 and a half car lengths for a 14 and 2/3 foot car like a late-model
Corvette. So, at 30 mph, a second is three car lengths and at 60 mph it
is six. If you lose an autocross by 1 second (and you’ll be pretty good if
you can do that with all the good drivers in our region), you’re losing by
somewhere between 3 and 6 car lengths! This is because the average speed
in an autocross is between 30 and 60 mph.

Everytime you plow a little or get a little sideways, just visualize your
competition overtaking you by a car length or so. One of the reasons au-
tocross is such a difficult sport, but also such a pure sport, from the driver’s
standpoint, is that you can’t make up this time. If you blow a corner in a
road race, you may have a few laps in which to make it up. But to win an
autocross against good competition, you must drive nearly perfectly. The
driver who makes the fewest mistakes usually wins!

The next kinematic equation involves acceleration. It so happens that
the distance covered by a car at constant acceleration from a standing start
is given by

d =
1

2
at2

or 1/2 times the acceleration times the time, squared. What conversions
will help us do mental calculations with this equation? Usually, we like
to measure acceleration in Gs. One G happens to be 32.1 feet per second
squared. Fortunately, we don’t have to deal with miles and hours here, so
our equation becomes,

d (feet) = 16a (Gs) t (seconds)2
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roughly. So, a car accelerating from a standing start at 1
2
G, which is a typical

number for a good, stock sports car, will go 8 feet in 1 second. Not very far!
However, this picks up rapidly. In two seconds, the car will go 32 feet, or
over two car lengths.

Just to prove to you that this isn’t crazy, let’s answer the question “How
long will it take a car accelerating at 1

2
G to do the quarter mile?” We invert

the equation above (recall your high school algebra), to get

t =
√
d (feet) 16a (Gs)

and we plug in the numbers: the quarter mile equals 1320 feet, a = 1
2
G,

and we get t =
√

1320/8 =
√

165 which is about 13 seconds. Not too

unreasonable! A real car will not be able to keep up full 1
2
G acceleration for

a quarter mile due to air resistance and reduced torque in the higher gears.
This explains why real (stock) sports cars do the quarter mile in 14 or 15
seconds.

The more interesting result is the fact that it takes a full second to go
the first 8 feet. So, we can see that the launch is critical in an autocross.
With excessive wheelspin, which robs you of acceleration, you can lose a
whole second right at the start. Just visualize your competition pulling 8
feet ahead instantly, and that margin grows because they are ‘hooked up’
better.

For doing these mental calculations, it is helpful to memorize a few
squares. 8 squared is 64, 10 squared is 100, 11 squared is 121, 12 squared
is 144, 13 squared is 169, and so on. You can then estimate square roots in
your head with acceptable precision.

Finally, let’s examine how engine torque becomes force at the drive wheels
and finally acceleration. For this examination, we will need to know the mass
of the car. Any equation in physics that involves mass is called dynamic, as
opposed to kinematic. Let’s say we have a Corvette that weighs 3200 pounds
and produces 330 foot-pounds of torque at the crankshaft. The Corvette’s
automatic transmission has a first gear ratio of 3.06 (the auto is the trick set
up for vettes—just ask Roger Johnson or Mark Thornton). A transmission is
nothing but a set of circular, rotating levers, and the gear ratio is the leverage,
multiplying the torque of the engine. So, at the output of the transmission,
we have

3.06× 330 = 1010 foot-pounds
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of torque. The differential is a further lever-multiplier, in the case of the
Corvette by a factor of 3.07, yielding 3100 foot pounds at the center of the
rear wheels (this is a lot of torque!). The distance from the center of the
wheel to the ground is about 13 inches, or 1.08 feet, so the maximum force
that the engine can put to the ground in a rearward direction (causing the
ground to push back forward—remember part 1 of this series!) in first gear
is

3100 foot-pounds/1.08 feet = 2870 pounds

Now, at rest, the car has about 50/50 weight distribution, so there is about
1600 pounds of load on the rear tires. You will remember from last month’s
article on tire adhesion that the tires cannot respond with a forward force
much greater than the weight that is on them, so they simply will spin if you
stomp on the throttle, asking them to give you 2870 pounds of force.

We can now see why it is important to squeeeeeeeze the throttle gently
when launching. In the very first instant of a launch, your goal as a driver
is to get the engine up to where it is pushing on the tire contact patch at
about 1600 pounds. The tires will squeal or hiss just a little when you get
this right. Not so coincidentally, this will give you a forward force of about
1600 pounds, for an F = ma (part 1) acceleration of about 1

2
G, or half the

weight of the car. The main reason a car will accelerate with only 1
2
G to

start with is that half of the weight is on the front wheels and is unavailable
to increase the stiction of the rear, driving tires. Immediately, however, there
will be some weight transfer to the rear. Remembering part 1 of this series
again, you can estimate that about 320 pounds will be transferred to the rear
immediately. You can now ask the tires to give you a little more, and you
can gently push on the throttle. Within a second or so, you can be at full
throttle, putting all that torque to work for a beautiful hole shot!

In a rear drive car, weight transfer acts to make the driving wheels capable
of withstanding greater forward loads. In a front drive car, weight transfer
works against acceleration, so you have to be even more gentle on the throttle
if you have a lot of power. An all-wheel drive car puts all the wheels to work
delivering force to the ground and is theoretically the best.

Technical people call this style of calculating “back of the envelope,”
which is a somewhat picturesque reference to the habit we have of writing
equations and numbers on any piece of paper that happens to be handy. You
do it without calculators or slide rules or abacuses. You do it in the garage
or the pits. It is not exactly precise, but gives you a rough idea, say within
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10 or 20 percent, of the forces and accelerations at work. And now you know
how to do back-of-the-envelope calculations, too.



Part 4

There Is No Such Thing as
Centrifugal Force
One often hears of “centrifugal force.” This is the apparent force that throws
you to the outside of a turn during cornering. If there is anything loose in the
car, it will immediately slide to the right in a left hand turn, and vice versa.
Perhaps you have experienced what happened to me once. I had omitted
to remove an empty Pepsi can hidden under the passenger seat. During a
particularly aggressive run (something for which I am not unknown), this
can came loose, fluttered around the cockpit for a while, and eventually flew
out the passenger window in the middle of a hard left hand corner.

I shall attempt to convince you, in this month’s article, that centrifugal
force is a fiction, and a consequence of the fact first noticed just over three
hundred years ago by Newton that objects tend to continue moving in a
straight line unless acted on by an external force.

When you turn the steering wheel, you are trying to get the front tires to
push a little sideways on the ground, which then pushes back, by Newton’s
third law. When the ground pushes back, it causes a little sideways acceler-
ation. This sideways acceleration is a change in the sideways velocity. The
acceleration is proportional to the sideways force, and inversely proportional
to the mass of the car, by Newton’s second law. The sideways acceleration
thus causes the car to veer a little sideways, which is what you wanted when
you turned the wheel. If you keep the steering and throttle at constant po-
sitions, you will continue to go mostly forwards and a little sideways until
you end up where you started. In other words, you will go in a circle. When
driving through a sweeper, you are going part way around a circle. If you
take skid pad lessons (highly recommended), you will go around in circles all
day.

If you turn the steering wheel a little more, you will go in a tighter circle,
and the sideways force needed to keep you going is greater. If you go around
the same circle but faster, the necessary force is greater. If you try to go
around too fast, the adhesive limit of the tires will be exceeded, they will
slide, and you will not stick to the circular path—you will not “make it.”

From the discussion above, we can see that in order to turn right, for
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example, a force, pointing to the right, must act on the car that veers it
away from the straight line it naturally tries to follow. If the force stays
constant, the car will go in a circle. From the point of view of the car, the
force always points to the right. From a point of view outside the car, at rest
with respect to the ground, however, the force points toward the center of the
circle. From this point of view, although the force is constant in magnitude, it
changes direction, going around and around as the car turns, always pointing
at the geometrical center of the circle. This force is called centripetal, from
the Greek for “center seeking.” The point of view on the ground is privileged,
since objects at rest from this point of view feel no net forces. Physicists call
this special point of view an inertial frame of reference. The forces measured
in an inertial frame are, in a sense, more correct than those measured by a
physicist riding in the car. Forces measured inside the car are biased by the
centripetal force.

Inside the car, all objects, such as the driver, feel the natural inertial
tendency to continue moving in a straight line. The driver receives a cen-
tripetal force from the car through the seat and the belts. If you don’t have
good restraints, you may find yourself pushing with your knee against the
door and tugging on the controls in order to get the centripetal force you
need to go in a circle with the car. It took me a long time to overcome the
habit of tugging on the car in order to stay put in it. I used to come home
with bruises on my left knee from pushing hard against the door during an
autocross. I found that a tight five- point harness helped me to overcome
this unnecessary habit. With it, I no longer think about body position while
driving—I can concentrate on trying to be smooth and fast. As a result, I
use the wheel and the gearshift lever for steering and shifting rather than for
helping me stay put in the car!

The ‘forces’ that the driver and other objects inside the car feel are ac-
tually centripetal. The term centrifugal, or “center fleeing,” refers to the in-
ertial tendency to resist the centripetal force and to continue going straight.
If the centripetal force is constant in magnitude, the centrifugal tendency
will be constant. There is no such thing as centrifugal force (although it is a
convenient fiction for the purpose of some calculations).

Let’s figure out exactly how much sideways acceleration is needed to keep
a car going at speed v in a circle of radius r. We can then convert this into
force using Newton’s second law, and then figure out how fast we can go in
a circle before exceeding the adhesive limit—in other words, we can derive
maximum cornering speed. For the following discussion, it will be helpful
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for you to draw little back-of-the-envelope pictures (I’m leaving them out,
giving our editor a rest from transcribing my graphics into the newsletter).

Consider a very short interval of time, far less than a second. Call it dt
(d stands for “delta,” a Greek letter mathematicians use as shorthand for
“tiny increment”). In time dt, let us say we go forward a distance dx and
sideways a distance ds. The forward component of the velocity of the car
is approximately v = dx/dt. At the beginning of the time interval dt, the
car has no sideways velocity. At the end, it has sideways velocity ds/dt. In
the time dt, the car has thus had a change in sideways velocity of ds/dt.
Acceleration is, precisely, the change in velocity over a certain time, divided
by the time; just as velocity is the change in position over a certain time,
divided by the time. Thus, the sideways acceleration is

a =
ds

dt

1

dt

How is ds related to r, the radius of the circle? If we go forward by a fraction
f of the radius of the circle, we must go sideways by exactly the same fraction
of dx to stay on the circle. This means that ds = f dx. The fraction f is,
however, nothing but dx/r. By this reasoning, we get the relation

ds = dx
dx

r

We can substitute this expression for ds into the expression for a, and re-
membering that v = dx/dt, we get the final result

a =
ds

dt

1

dt
=
dx

dt

dx

dt

1

r
=
v2

r

This equation simply says quantitatively what we wrote before: that the
acceleration (and the force) needed to keep to a circular line increases with
the velocity and increases as the radius gets smaller.

What was not appreciated before we went through this derivation is that
the necessary acceleration increases as the square of the velocity. This means
that the centripetal force your tires must give you for you to make it through
a sweeper is very sensitive to your speed. If you go just a little bit too fast,
you might as well go much too fast—your’re not going to make it. The
following table shows the maximum speed that can be achieved in turns of
various radii for various sideways accelerations. This table shows the value
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of the expression
15

22

√
32.1a (gees) r(feet)

which is the solution of a = v2/r for v, the velocity. The conversion factor
15/22 converts v from feet per second to miles per hour, and 32.1 converts
a from gees to feet per second squared. We covered these conversion factors
in part 3 of this series.

TABLE 1: SPEED (MILES PER HOUR)
ACCELERATION RADIUS (FEET)

(GEES) 50.00 100.00 150.00 200.00 500.00
0.25 13.66 19.31 23.66 27.32 43.19
0.50 19.31 27.32 33.45 38.63 61.08
0.75 23.66 33.45 40.97 47.31 74.81
1.00 27.32 38.63 47.31 54.63 86.38
1.25 30.54 43.19 52.90 61.08 96.57
1.50 33.45 47.31 57.94 66.91 105.79
1.75 36.13 51.10 62.59 72.27 114.27
2.00 38.63 54.63 66.91 77.26 122.16

For autocrossing, the columns for 50 and 100 feet and the row for 1.00
G are most germane. The table tells us that to achieve 1.00 G sideways
acceleration in a corner of 50 foot radius (this kind of corner is all too common
in autocross), a driver must not go faster than 27.32 miles per hour. To go
30 mph, 1.25 G is required, which is probably not within the capability of an
autocross tire at this speed. There is not much subjective difference between
27 and 30 mph, but the objective difference is usually between making a
controlled run and spinning badly.

The absolute fastest way to go through a corner is to be just over the
limit near the exit, in a controlled slide. To do this, however, you must be
pointed in just such a way that when the car breaks loose and slides to the
exit of the corner it will be pointed straight down the optimal racing line at
the exit when it “hooks up” again. You can smoothly add throttle during
this maneuver and be really moving out of the corner. But you must do it
smoothly. It takes a long time to learn this, and probably a lifetime to perfect
it, but it feels absolutely triumphal when done right. I have not figured out
how to drive through a sweeper, except for the exit, at anything greater than
the limiting velocity because sweepers are just too long to slide around. If
anyone (Ayrton Senna, perhaps?) knows how, please tell me!
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The chain of reasoning we have just gone through was first discovered by
Newton and Leibniz, working independently. It is, in fact, a derivation in
differential calculus, the mathematics of very small quantities. Newton keeps
popping up. He was perhaps the greatest of all physicists, having discovered
the laws of motion, the law of gravity, and calculus, among other things such
as the fact that white light is made up of multiple colors mixed together.

It is an excellent diagnostic exercise to drive a car around a circle marked
with cones or chalk and gently to increase the speed until the car slides. If
the front breaks away first, your car has natural understeer, and if the rear
slides first, it has natural oversteer. You can use this information for chassis
tuning. Of course, this is only to be done in safe circumstances, on a rented
skid pad or your own private parking lot. The police will gleefully give you
a ticket if they catch you doing this in the wrong places.



Part 5

Introduction to the Racing Line
This month, we analyze the best way to go through a corner. “Best” means
in the least time, at the greatest average speed. We ask “what is the shape
of the driving line through the corner that gives the best time?” and “what
are the times for some other lines, say hugging the outside or the inside of
the corner?” Given the answers to these questions, we go on to ask “what
shape does a corner have to be before the driving line I choose doesn’t make
any time difference?” The answer is a little surprising.

The analysis presented here is the simplest I could come up with, and
yet is still quite complicated. My calculations went through about thirty
steps before I got the answer. Don’t worry, I won’t drag you through the
mathematics; I just sketch out the analysis, trying to focus on the basic
principles. Anyone who would read through thirty formulas would probably
just as soon derive them for him or herself.

There are several simplifying assumptions I make to get through the anal-
ysis. First of all, I consider the corner in isolation; as an abstract entity lifted
out of the rest of a course. The actual best driving line through a corner de-
pends on what comes before it and after it. You usually want to optimize
exit speed if the corner leads onto a straight. You might not apex if another
corner is coming up. You may be forced into an unfavorable entrance by a
prior curve or slalom.

Speaking of road courses, you will hear drivers say things like “you have to
do such-and-such in turn six to be on line for turn ten and the front straight.”
In other words, actions in any one spot carry consequences pretty much all
the way around. The ultimate drivers figure out the line for the entire course
and drive it as a unit, taking a Zen-like approach. When learning, it is
probably best to start out optimizing each kind of corner in isolation, then
work up to combinations of two corners, three corners, and so on. In my
own driving, there are certain kinds of three corner combinations I know,
but mostly I work in twos. I have a long way to go.

It is not feasible to analyze an actual course in an exact, mathematical
way. In other words, although science can provide general principles and
hints, finding the line is, in practice, an art. For me, it is one of the most
fun parts of racing.

20
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Other simplifying assumptions I make are that the car can either accel-
erate, brake, or corner at constant speed, with abrupt transitions between
behaviors. Thus, the lines I analyze are splices of accelerating, braking, and
cornering phases. A real car can, must, and should do these things in combi-
nation and with smooth transitions between phases. It is, in fact, possible to
do an exact, mathematical analysis with a more realistic car that transitions
smoothly, but it is much more difficult than the splice-type analysis and does
not provide enough more quantitative insight to justify its extra complexity
for this article.

Our corner is the following ninety-degree right-hander:

This figure actually represents a family of corners with any constant
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width, any radius, and short straights before and after. First, we go through
the entire analysis with a particular corner of 75 foot radius and 30 foot
width, then we end up with times for corners of various radii and widths.

Let us define the following parameters:

r = radius of corner center line = 75 feet

W = width of course = 30 feet

ro = radius of outer edge = r + 1
2
W = 90 feet

ri = radius of inner edge = r − 1
2
W = 60 feet

Now, when we drive this corner, we must keep the tires on the course,
otherwise we get a lot of cone penalties (or go into the weeds). It is easiest
(though not so realistic) to do the analysis considering the path of the center
of gravity of the car rather than the paths of each wheel. So, we define an
effective course, narrower than the real course, down which we may drive the
center of the car.

w = width of car = 6 feet

Ro = effective outer radius = ro − 1
2
w = 87 feet

Ri = effective inner radius = ri + 1
2
w = 63 feet

X = effective width of course = W − w = 24 feet

This course is indicated by the labels and the thick radius lines in the figure.
From last month’s article, we know that for a fixed centripetal accelera-

tion, the maximum driving speed increases as the square root of the radius.
So, if we drive the largest possible circle through the effective corner, start-
ing at the outside of the entrance straight, going all the way to the inside
in the middle of the corner (the apex ), and ending up at the outside of the
exit straight, we can corner at the maximum speed. Such a line is shown in
the figure as the thick circle labeled “line m.” This is a simplified version
of the classic racing line through the corner. Line m reaches the apex at
the geometrical center of the circle, whereas the classic racing line reaches
an apex after the geometrical center—a late apex—because it assumes we
are accelerating out of the corner and must therefore have a continuously
increasing radius in the second half and a slightly tighter radius in the first
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half to prepare for the acceleration. But, we continue analyzing the geomet-
rically perfect line because it is relatively easy. The figure shows also Line
i, the inside line, which come up the inside of the entrance straight, corners
on the inside, and goes down the inside of the exit straight; and Line o, the
outside line, which comes up the outside, corners on the outside, and exits
on the outside.

One might argue that there are certain advantages of line i over line m.
Line i is considerably shorter than Line m, and although we have to go slower
through the corner part, we have less total distance to cover and might get
through faster. Also, we can accelerate on part of the entrance chute and all
the way on the exit chute, while we have to drive line m at constant speed.
Let’s find out how much time it takes to get through lines i and m. We
include line o for completeness, even though it looks bad because it is both
slower and longer than m.

If we assume a maximum centripetal acceleration of 1.10g, which is just
within the capability of autocross tires, we get the following speeds for the
cornering phases of Lines i, o, and m:

Cornering Speed (mph)
Line i Line o Line m
32.16 37.79 48.78
vi vo vm

Line m is all cornering, so we can easily calculate the time to drive it once
we know the radius, labeled k in the figure. A geometrical analysis results in

k = 3.414(Ro − 0.707Ri) = 145 feet

and the time is

tm =
(
π

2
k
)
/
(

22

15
vm

)
= 3.18 seconds.

For line i, we accelerate for a bit, brake until we reach 32.16 mph, corner
at that speed, and then accelerate on the exit. Let’s assume, to keep the
comparison fair, that we have timing lights at the beginning and end of line
m and that we can begin driving line i at 48.78 mph, the same speed that
we can drive line m. Let us also assume that the car can accelerate at 1

2
g

and brake at 1g. Our driving plan for line i results in the following velocity
profile:
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Because we can begin by accelerating, we start beating line m a little.
We have to brake hard to make the corner. Finally, although we accelerate
on the exit, we don’t quite come up to 48.78 mph, the exit speed for line m.
But, we don’t care about exit speed, only time through the corner. Using
the velocity profile above, we can calculate the time for line i, call it ti, to
be 4.08 seconds. Line i loses by 9/10ths of a second. It is a fair margin to
lose an autocross by this much over a whole course, but this analysis shows
we can lose it in just one typical corner! In this case, line i is a catastrophic
mistake. Incidentally, line o takes 4.24 seconds = to.

What if the corner were tighter or of greater radius? The following table
shows some times for 30 foot wide corners of various radii:

radius 30.00 45.00 60.00 75.00 90.00 95.00
to 3.99 4.06 4.15 4.24 4.35 4.38
ti 3.94 3.94 4.00 4.08 4.17 4.21
tm 2.64 2.83 3.01 3.18 3.34 3.39
margin 1.30 1.11 1.01 0.90 0.83 0.82

Line i never beats line m even though that as the radius increases, the
margin of loss decreases. The trend is intuitive because corners of greater
radius are also longer and the extra speed in line m over line i is less. The
margin is greatest for tight corners because the width is a greater fraction of
the length and the speed differential is greater.
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How about for various widths? The following table shows times for a 75
foot radius corner of several widths:

width 10.00 30.00 50.00 70.00 90.00
to 2.68 4.24 5.47 6.50 7.41
ti 2.62 4.08 5.32 6.45 7.51
tm 2.46 3.18 3.77 4.27 4.73
margin 0.16 0.90 1.55 2.18 2.79

The wider the course, the greater the margin of loss. This is, again,
intuitive since on a wide course, line m is a really large circle through even
a very tight corner. Note that line o becomes better than line i for wide
courses. This is because the speed differential between lines o and i is very
great for wide courses. The most notable fact is that line m beats line i by
0.16 seconds even on a course that is only four feet wider than the car! You
really must “use up the whole course.”

So, the answer is, under the assumptions made, that the inside line is
never better than the classic racing line. For the splice-type car behavior
assumed, I conjecture that no line is faster than line m.

We have gone through a simplified kind of variational analysis. Varia-
tional analysis is used in all branches of physics, especially mechanics and
optics. It is possible, in fact, to express all theories of physics, even the most
arcane, in variational form, and many physicists find this form very appeal-
ing. It is also possible to use variational analysis to write a computer program
that finds an approximately perfect line through a complete, realistic course.



Part 6

Speed and Horsepower
The title of this month’s article consists of two words dear to every racer’s
heart. This month, we do some “back of the envelope” calculations to inves-
tigate the basic physics of speed and horsepower (the “back of the envelope”
style of calculating was covered in part 3 of this series).

How much horsepower does it take to go a certain speed? At first blush,
a physicist might be tempted to say “none,” because he or she remembers
Newton’s first law, by which an object moving at a constant speed in a
straight line continues so moving forever, even to the end of the Universe,
unless acted on by an external force. Everyone knows, however, that it is
necessary to keep your foot on the gas to keep a car moving at a constant
speed. Keeping your foot on the gas means that you are making the engine
apply a backward force to the ground, which applies a reaction force forward
on the car, to keep the car moving. In fact, we know a few numbers from
our car’s shop manual. A late model Corvette, for example, has a top speed
of about 150 miles per hour and about 240 hp. This means that if you keep
your foot all the way down, using up all 240 hp, you can eventually go 150
mph. It takes a while to get there. In this car, you can get to 60 mph in
about 6 seconds (if you don’t spin the drive wheels), to 100 mph in about 15
seconds, and 150 in about a minute.

All this seems to contradict Newton’s first law. What is going on? An
automobile moving at constant speed in a straight line on level ground is,
in fact, acted on by a number of external forces that tend to slow it down.
Without these forces, the car would coast forever as guaranteed by Newton’s
first law. You must counteract these forces with the engine, which indirectly
creates a reaction force that keeps the car going. When the car is going at
a constant speed, the net force on the car, that is, the speeding-up forces
minus the slowing-down forces, is zero.

The most important external, slowing-down force is air resistance or drag.
The second most important force is friction between the tires and the ground,
the so-called rolling resistance. Both these forces are called resistance because
they always act to oppose the forward motion of the car in whatever direction
it is going. Another physical effect that slows a car down is internal friction in
the drive train and wheel bearings. Acting internally, these forces cannot slow

26



The Physics of Racing 27

the car. However, they push backwards on the tires, which push forward on
the ground, which pushes back by Newton’s third law, slowing the car down.
The internal friction forces are opposed by external reaction forces, which
act as slight braking forces, slowing the car. So, Newton and the Universe
are safe; everything is working as it should.

How big are the resistance forces, and what role does horsepower play?
The physics of air resistance is very complex and an area of vigorous research
today. Most of this research is done by the aerospace industry, which is
technologically very closely related to the automobile industry, especially
when it comes to racing. We’ll slog through some arithmetic here to come
up with a table that shows how much horsepower it takes to sustain speed.
Those who don’t have the stomach to go through the math can skim the next
few paragraphs.

We cannot derive equations for air resistance here. We’ll just look them
up. My source is Fluid Mechanics, by L. D. Landau and E. M. Lifshitz, two
eminent Russian physicists. They give the following approximate formula:

F =
1

2
CdAρv

2

The factors in this equation are the following:

Cd = coefficient of friction, a factor depending on the shape of a car and
determined by experiment; for a late model Corvette it is about 0.30;

A = frontal area of the car; for a Corvette, it is about 20 square feet;

ρ = Greek letter rho, density of air, which we calculate below;

v = speed of the car.

Let us calculate the density of air using “back of the envelope” methods.
We know that air is about 79% Nitrogen and 21% Oxygen. We can look
up the fact that Nitrogen has a molecular weight of about 28 and Oxygen
has a molecular weight of about 32. What is molecular weight? It is the
mass (not the weight, despite the name) of 22.4 liters of gas. It is a number
of historical convention, just like feet and inches, and doesn’t have any real
science behind it. So, we figure that air has an average molecular weight of

79% of 28 + 21% of 32 = 28.84 grams

22.4 liters
= 1.29 gm/l
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I admit to using a calculator to do this calculation, against the spirit of the
“back of the envelope” style. So sue me.

We need to convert 1.29 gm/l to pounds of mass per cubic foot so that
we can do the force calculations in familiar, if not convenient, units. It is
worthwhile to note, as an aside, that a great deal of the difficulty of doing
calculations in the physics of racing has to do with the traditional units of
feet, miles, and pounds we use. The metric system makes all such calculations
vastly simpler. Napoleon Bonaparte wanted to convert the world the metric
system (mostly so his own soldiers could do artillery calculations quickly in
their heads) but it is still not in common use in America nearly 200 years
later!

Again, we look up the conversion factors. My source is Engineering For-
mulas by Kurt Gieck, but they can be looked up in almost any encyclopedia
or dictionary. There are 1000 liters in a cubic meter, which in turn contains
35.51 cubic feet. Also, a pound-mass contains 453.6 grams. These figures
give us, for the density of air

1.29
gm

liter

lb-mass

453.6 gm

1000 liters

1 meter3

1 meter3

35.51 ft3
= 0.0801

lb-mass

ft3

This says that a cubic foot of air weighs 8 hundredths of a pound, and
so it does! Air is much more massive than it seems, until you are moving
quickly through it, that is.

Let’s finish off our equation for air resistance. We want to fill in all the
numbers except for speed, v, using the Corvette as an example car so that
we can calculate the force of air resistance for a variety of speeds. We get

F =
1

2
(0.30 = Cd)

(
20 ft2 = A

)(
0.080

lb-mass

ft3
= ρ

)
v2 = 0.24v2 lb-mass

ft

We want, at the end, to have v in miles per hour, but we need v in feet per
seconds for the calculations to come out right. We recall that there are 22
feet per second for every 15 miles per hour, giving us

F = 0.24

(
22 ft/sec

15 mph
v (mph)

)2
lb-mass

ft

= 0.517 (v (mph))2 lb-mass ft

sec2

Now (this gets confusing, and it wouldn’t be if we were using the metric
system), a pound mass is a phony unit. A lb-mass is concocted to have a
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weight of 1 pound under the action of the Earth’s gravity. Pounds are a unit
of force or weight, not of mass. We want our force of air resistance in pounds
of force, so we have to divide lb-mass ft/sec2 by 32.1, numerically equal to
the acceleration of Earth’s gravity in ft/sec2, to get pounds of force. You
just have to know these things. This was a lot of work, but it’s over now.
We finally get

F =
0.517

32.1
(v (mph))2 = 0.0161 (v (mph))2 pounds

Let’s calculate a few numbers. The following table gives the force of air
resistance for a number of interesting speeds:

v(mph) 15 30 60 90 120 150
F (pounds) 3.60 14.5 58.0 130 232 362

We can see that the force of air resistance goes up rapidly with speed,
until we need over 350 pounds of constant force just to overcome drag at 150
miles per hour. We can now show where horsepower comes in.

Horsepower is a measure of power, which is a technical term in physics. It
measures the amount of work that a force does as it acts over time. Work is
another technical term in physics. It measures the actual effect of a force in
moving an object over a distance. If we move an object one foot by applying
a force of one pound, we are said to be doing one foot-pound of work. If it
takes us one second to move the object, we have exerted one foot-pound per
second of power. A horsepower is 550 foot-pounds per second. It is another
one of those historical units that Napoleon hated and that has no reasonable
origin in science.

We can expend one horsepower by exerting 550 pounds of force to move
an object 1 foot in 1 second, or by exerting 1 pound of force to move an object
550 feet in 1 second, or by exerting 1 pound of force to move an object 1
foot in 0.001818 seconds, and so on. All these actions take the same amount
of power. Incidentally, a horsepower happens to be equal also to 745 watts.
So, if you burn about 8 light bulbs in your house, someone somewhere is
expending at least one horsepower (and probably more like four or five) in
electrical forces to keep all that going for you, and you pay for the service at
the end of the month!.

All this means that to find out how much horsepower it takes to overcome
air resistance at any speed, we need to multiply the force of air resistance



The Physics of Racing 30

by speed (in feet per second, converted from miles per hour), and divide by
550, to convert foot-lb/sec to horsepower. The formula is

P = Fv =
0.0161

550

22

15
v3 =

0.354

8,250
(v (mph))3 horsepower

and we get the following numbers from the formula for a few interesting
speeds.

v(mph) 30 55 65 90 120 150 200
F (pounds) 14.5 48.7 68.0 130 232 362 644
horsepower 1.16 7.14 11.8 31.3 74.2 145 344

I put 55 mph and 65 mph in this table to show why some people think
that the 55 mph national speed limit saves gasoline. It only requires about 7
hp to overcome drag at 55 mph, while it requires almost 12 hp to overcome
drag at 65. Fuel consumption is approximately proportional to horsepower
expended.

More interesting to the racer is the fact that it takes 145 hp to overcome
drag at 150 mph. We know that our Corvette example car has about 240
hp, so about 95 hp must be going into overcoming rolling resistance and the
slight braking forces arising from internal friction in the drive train and wheel
bearings. Race cars capable of going 200 mph usually have at least 650 hp,
about 350 of which goes into overcoming air resistance. It is probably possible
to go 200 mph with a car in the 450–500 hp range, but such a car would
have very good aerodynamics; expensive, low-friction internal parts; and
low rolling resistance tires, which are designed to have the smallest possible
contact patch like high performance bicycle tires, and are therefore not good
for handling.



Part 7

The Traction Budget
This month, we introduce the traction budget. This is a way of thinking
about the traction available for car control under various conditions. It
can help you make decisions about driving style, the right line around a
course, and diagnosing handling problems. We introduce a diagramming
technique for visualizing the traction budget and combine this with a well-
known visualization tool, the “circle of traction,” also known as the circle
of friction. So this month’s article is about tools, conceptual and visual, for
thinking about some aspects of the physics of racing.

To introduce the traction budget, we first need to visualize a tire in
contact with the ground. Figure 1 shows how the bottom surface of a tire
might look if we could see that surface by looking down from above. In other
words, this figure shows an imaginary “X-ray” view of the bottom surface of
a tire. For the rest of the discussion, we will always imagine that we view
the tire this way. From this point of view, “up” on the diagram corresponds
to forward forces and motion of the tire and the car, “down” corresponds
to backward forces and motion, “left” corresponds to leftward forces and
motion, and “right” on the diagram corresponds to rightward forces and
motion.

The figure shows a shaded, elliptical region, where the tire presses against
the ground. All the interaction between the tire and the ground takes place
in this contact patch: that part of the tire that touches the ground. As the
tire rolls, one bunch of tire molecules after another move into the contact
patch. But the patch itself more-or-less keeps the same shape, size, and po-
sition relative to the axis of rotation of the tire and the car as a whole. We
can use this fact to develop a simplified view of the interaction between tire
and ground. This simplified view lets us quickly and easily do approximate
calculations good within a few percent. (A full-blown, mathematical analysis
requires tire coordinates that roll with the tire, ground coordinates fixed on
the ground, car coordinates fixed to the car, and many complicated equa-
tions relating these coordinate systems; the last few percent of accuracy in
a mathematical model of tire-ground interaction involves a great deal more
complexity.)

You will recall that forces on the tire from the ground are required to make
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a car change either its speed of motion or its direction of motion. Thinking
of the X-ray vision picture, forces pointing up are required to make the car
accelerate, forces pointing down are required to make it brake, and forces
pointing right and left are required to make the car turn. Consider forward
acceleration, for a moment. The engine applies a torque to the axle. This
torque becomes a force, pointing backwards (down, on the diagram), that
the tire applies to the ground. By Newton’s third law, the ground applies
an equal and opposite force, therefore pointing forward (up), on the contact
patch. This force is transmitted back to the car, accelerating it forward. It is
easy to get confused with all this backward and forward action and reaction.
Remember to think only about the forces on the tire and to ignore the forces
on the ground, which point the opposite way.

You will also recall that a tire has a limited ability to stick to the ground.
Apply a force that is too large, and the tire slides. The maximum force that
a tire can take depends on the weight applied to the tire:

F ≤ µW

where F is the force on the tire, µ is the coefficient of adhesion (and depends
on tire compound, ground characteristics, temperature, humidity, phase of
the moon, etc.), and W is the weight or load on the tire.
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By Newton’s second law, the weight on the tire depends on the fraction of
the car’s mass that the tire must support and the acceleration of gravity, g =
32.1 ft/sec2. The fraction of the car’s mass that the tire must support depends
on geometrical factors such as the wheelbase and the height of the center of
gravity. It also depends on the acceleration of the car, which completely
accounts for weight transfer.

It is critical to separate the geometrical, or kinematic, aspects of weight
transfer from the mass of the car. Imagine two cars with the same geome-
try but different masses (weights). In a one g braking maneuver, the same
fraction of each car’s total weight will be transferred to the front. In the
example of Part 1 of this series, we calculated a 20% weight transfer during
one g braking because the height of the CG was 20% of the wheelbase. This
weight transfer will be the same 20% in a 3500 pound, stock Corvette as
in a 2200 pound, tube-frame, Trans-Am Corvette so long as the geometry
(wheelbase, CG height, etc.) of the two cars is the same. Although the ac-
tual weight, in pounds, will be different in the two cases, the fractions of the
cars’ total weight will be equal.

Separating kinematics from mass, then, we have for the weight

W = f(a)mg

where f(a) is the fraction of the car’s mass the tire must support and also
accounts for weight transfer, m is the car’s mass, and g is the acceleration of
gravity.

Finally, by Newton’s second law again, the acceleration of the tire due to
the force F applied to it is

a = F/f(a)m

We can now combine the expressions above to discover a fascinating fact:

a = F/f(a)m ≤ amax

amax =
µW

f(a)m
=
µf(a)mg

f(a)m
= µg

The maximum acceleration a tire can take is µg, a constant, independent
of the mass of the car! While the maximum force a tire can take depends
very much on the current vertical load or weight on the tire, the acceleration
of that tire does not depend on the current weight. If a tire can take one
g before sliding, it can take it on a lightweight car as well as on a heavy
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car, and it can take it under load as well as when lightly loaded. We hinted
at this fact in Part 2, but the analysis above hopefully gives some deeper
insight into it. We note that amax being constant is only approximately true,
because µ changes slightly as tire load varies, but this is a second-order effect
(covered in a later article).

So, in an approximate way, we can consider the available acceleration
from a tire independently of details of weight transfer. The tire will give
you so many gees and that’s that. This is the essential idea of the traction
budget. What you do with your budget is your affair. If you have a tire
that will give you one g, you can use it for accelerating, braking, cornering,
or some combination, but you cannot use more than your budget or you will
slide. The front-back component of the budget measures accelerating and
braking, and the right-left component measures cornering acceleration. The
front-back component, call it ay, combines with the left-right component, ax,
not by adding, but by the Pythagorean formula:

a =
√
a2
x + a2

y

Rather than trying to deal with this formula, there is a convenient, visual
representation of the traction budget in the circle of traction. Figure 2 shows
the circle. It is oriented in the same way as the X-ray view of the contact
patch, Figure 1 , so that up is forward and right is rightward. The circular
boundary represents the limits of the traction budget, and every point inside
the circle represents a particular choice of how you spend your budget. A
point near the top of the circle represents pure, forward acceleration, a point
near the bottom represents pure braking. A point near the right boundary,
with no up or down component, represents pure rightward cornering accel-
eration. Other points represent Pythagorean combinations of cornering and
forward or backward acceleration.

The beauty of this representation is that the effects of weight transfer are
factored out. So the circle remains approximately the same no matter what
the load on a tire.

In racing, of course, we try to spend our budget so as to stay as close to
the limit, i.e. , the circular boundary, as possible. In street driving, we try
to stay well inside the limit so that we have lots of traction available to react
to unforeseen circumstances.

I have emphasized that the circle is only an approximate representation of
the truth. It is probably close enough to make a computer driving simulation
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that feels right (I’m pretty sure that “Hard Drivin’ ” and other such games
use it). As mentioned, tire loads do cause slight, dynamic variations. Car
characteristics also give rise to variations. Imagine a car with slippery tires
in the back and sticky tires in the front. Such a car will tend to oversteer
by sliding. Its traction budget will not look like a circle. Figure 3 gives an
indication of what the traction budget for the whole car might look like (we
have been discussing the budget of a single tire up to this point, but the same
notions apply to the whole car). In Figure 3 , there is a large traction circle
for the sticky front tires and a small circle for the slippery rear tires. Un-
der acceleration, the slippery rears dominate the combined traction budget
because of weight transfer. Under braking, the sticky fronts dominate. The
combined traction budget looks something like an egg, flattened at top and
wide in the middle. Under braking, the traction available for cornering is
considerably greater than the traction available during acceleration because
the sticky fronts are working. So, although this poorly handling car tends
to oversteer by sliding the rear, it also tends to understeer during acceler-
ation because the slippery rears will not follow the steering front tires very
effectively.

The traction budget is a versatile and simple technique for analyzing and
visualizing car handling. The same technique can be applied to developing
driver’s skills, planning the line around a course, and diagnosing handling
problems.
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Part 8

Simulating Car Dynamics with
a Computer Program
This month, we begin writing a computer program to simulate the physics
of racing. Such a program is quite an ambitious one. A simple racing video
game, such as “Pole Position,” probably took an expert programmer several
months to write. A big, realistic game like “Hard Drivin’ ” probably took
three to five people more than a year to create. The point is that the topic
of writing a racing simulation is one that we will have to revisit many times
in these articles, assuming your patience holds out. There are many ‘just
physics’ topics still to cover too, such as springs and dampers, transients,
and thermodynamics. Your author hopes you will find the computer pro-
gramming topic an enjoyable sideline and is interested, as always, in your
feedback.

We will use a computer programming language called Scheme. You have
probably encountered BASIC, a language that is very common on personal
computers. Scheme is like BASIC in that it is interactive. An interactive
computer language is the right kind to use when inventing a program as
you go along. Scheme is better than BASIC, however, because it is a good
deal simpler and also more powerful and modern. Scheme is available for
most PCs at very modest cost (MIT Press has published a book and diskette
with Scheme for IBM compatibles for about $40; I have a free version for
Macintoshes). I will explain everything we need to know about Scheme as
we go along. Although I assume little or no knowledge about computer
programming on your part, we will ultimately learn some very advanced
things.

The first thing we need to do is create a data structure that contains
the mathematical state of the car at any time. This data structure is a
block of computer memory. As simulated time progresses, mathematical
operations performed on the data structure simulate the physics. We create
a new instance of this data structure by typing the following on the computer
keyboard at the Scheme prompt:

(new-race-car)

This is an example of an expression. The expression includes the parenthe-
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ses. When it is typed in, it is evaluated immediately. When we say that
Scheme is an interactive programming language, we mean that it evaluates
expressions immediately. Later on, I show how we define this expression. It
is by defining such expressions that we write our simulation program.

Everything in Scheme is an expression (that’s why Scheme is simple).
Every expression has a value. The value of the expression above is the new
data structure itself. We need to give the new data structure a name so we
can refer to it in later expressions:

(define car-161 (new-race-car))

This expression illustrates two Scheme features. The first is that expres-
sions can contain sub-expressions inside them. The inside expressions are
called nested. Scheme figures out which expressions are nested by count-
ing parentheses. It is partly by nesting expressions that we build up the
complexity needed to simulate racing. The second feature is the use of the
special Scheme word define. This causes the immediately following word to
become a stand-in synonym for the value just after. The technical name for
such a stand-in synonym is variable. Thus, the expression car-161, wherever
it appears after the define expression, is a synonym for the data structure
created by the nested expression (new-race-car).

We will have another data structure (with the same format) for car-240,
another for car-70, and so on. We get to choose these names to be almost
anything we like 1. So, we would create all the data structures for the cars
in our simulation with expressions like the following:

(define car-161 (new-race-car))

(define car-240 (new-race-car))

(define car-70 (new-race-car))

The state of a race car consists of several numbers describing the physics
of the car. First, there is the car’s position. Imagine a map of the course.
Every position on the map is denoted by a pair of coordinates, x and y.
For elevation changes, we add a height coordinate, z. The position of the
center of gravity of a car at any time is denoted with expressions such as the
following:

1It so happens, annoyingly, that we can’t use the word car. This is a Scheme reserved
word, like define. Its use is explained later
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(race-car-x car-161)

(race-car-y car-161)

(race-car-z car-161)

Each of these expressions performs data retrieval on the data structure
car-161. The value of the first expression is the x coordinate of the car,
etc.Normally, when running the Scheme interpreter, typing an expression
simply causes its value to be printed, so we would see the car position co-
ordinates printed out as we typed. We could also store these positions in
another block of computer memory for further manipulations, or we could
specify various mathematical operations to be performed on them.

The next pieces of state information are the three components of the
car’s velocity. When the car is going in any direction on the course, we
can ask “how fast is it going in the x direction, ignoring its motion in the
y and z directions?” Similarly, we want to know how fast it is going in
the y direction, ignoring the x and z directions, and so on. Decomposing
an object’s velocity into separate components along the principal coordinate
directions is necessary for computation. The technique was originated by
the French mathematician Descartes, and Newton found that the motion in
each direction can be analyzed independently of the motions in the other
directions at right angles to the first direction.

The velocity of our race car is retrieved via the following expressions:

(race-car-vx car-161)

(race-car-vy car-161)

(race-car-vz car-161)

To end this month’s article, we show how velocity is computed. Suppose
we retrieve the position of the car at simulated time t1 and save it in some
variables, as follows:

(define x1 (race-car-x car-161))

(define y1 (race-car-y car-161))

(define z1 (race-car-z car-161))

and again, at a slightly later instant of simulated time, t2:

(define x2 (race-car-x car-161))

(define y2 (race-car-y car-161))

(define z2 (race-car-z car-161))
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We have used define to create some new variables that now have the values
of the car’s positions at two times. To calculate the average velocity of the
car between the two times and store it in some more variables, we evaluate
the following expressions:

(define vx (/ (- x2 x1) (- t2 t1)))

(define vy (/ (- y2 y1) (- t2 t1)))

(define vz (/ (- z2 z1) (- t2 t1)))

The nesting of expressions is one level deeper than we have seen heretofore,
but these expressions can be easily analyzed. Since they all have the same
form, it suffices to explain just one of them. First of all, the define operation
works as before, just creating the variable vx and assigning it the value of
the following expression. This expression is

(/ (- x2 x1) (- t2 t1))

In normal mathematical notation, this expression would read

x2 − x1

t2 − t1

and in most computer languages, it would look like this:

(x2 - x1) / (t2 - t1)

We can immediately see this is the velocity in the x direction: a change in
position divided by the corresponding change in time. The Scheme version of
this expression looks a little strange, but there is a good reason for it: consis-
tency. Scheme requires that all operations, including everyday mathematical
ones, appear in the first position in a parenthesized expression, immediately
after the left parenthesis. Although consistency makes mathematical expres-
sions look strange, the payback is simplicity: all expressions have the same
form. If Scheme had one notation for mathematical expressions and another
notation for non-mathematical expressions, like most computer languages, it
would be more complicated. Incidentally, Scheme’s notation is called Polish
notation. Perhaps you have been exposed to Hewlett-Packard calculators,
which use reverse Polish, in in which the operator always appears in the last
position. Same idea, and advantages, as Scheme, only reversed.

So, to analyze the expression completely, it is a division expression
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(/ ...)

whose two arguments are nested subtraction expressions

(- ...) (- ...)

The whole expression has the form

(/ (- ...) (- ...))

which, when the variables are filled in, is

(/ (- x2 x1) (- t2 t1))

After a little practice, Scheme’s style for mathematics becomes second nature
and the advantages of consistent notation pay off in the long run.

Finally, we should like to store the velocity values in our data structure.
We do so as follows:

(set-race-car-vx! car-161 vx)

(set-race-car-vy! car-161 vy)

(set-race-car-vz! car-161 vz)

The set operations change the values in the data structure named car-161.
The exclamation point at the end of the names of these operations doesn’t
do anything special. It’s just a Scheme idiom for operations that change data
structures.



Part 9

Straights
We found in part 5 of this series, “Introduction to the Racing Line,” that a
driver can lose a shocking amount of time by taking a bad line in a corner.
With a six-foot-wide car on a ten-foot-wide course, one can lose sixteen
hundredths by ‘blowing’ a single right-angle turn. This month, we extend
the analysis of the racing line by following our example car down a straight.
It is often said that the most critical corner in a course is the one before the
longest straight. Let’s find out how critical it is. We calculate how much
time it takes to go down a straight as a function of the speed entering the
straight. The results, which are given at the end, are not terribly dramatic,
but we make several, key improvements in the mathematical model that is
under continuing development in this series of articles. These improvements
will be used as we proceed designing the computer program begun in Part 8.

The mathematical model for traveling down a straight follows from New-
ton’s second law:

F = ma, (1)

where F is the force on the car, m is the mass of the car, and a is the
acceleration of the car. We want to solve this equation to get time as a
function of distance down the straight. Basically, we want a table of numbers
so that we can look up the time it takes to go any distance. We can build this
table using accountants’ columnar paper, or we can use the modern version
of the columnar pad: the electronic spreadsheet program.

To solve equation 1, we first invert it:

a = F/m. (2)

Now a, the acceleration, is the rate of change of velocity with time. Rate of
change is simply the ratio of a small change in velocity to a small change in
time. Let us assume that we have filled in a column of times on our table.
The times start with 0 and go up by the same, small amount, say 0.05 sec.
Physicists call this small time the integration step. It is standard practice to
begin solving an equation with a fixed integration step. There are sometimes
good reasons to vary the integration step, but those reasons do not arise in
this problem. Let us call the integration step ∆t. If we call the time in the
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i-th row ti, then for every row except the first,

∆t = ti − ti−1 = constant. (3)

We label another column velocity, and we’ll call the velocity in the i-th
row vi. For every row except the first, equation 2 becomes:

vi − vi−1

∆t
= F/m. (4)

We want to fill in velocities as we go down the columns, so we need to solve
equation 4 for vi. This will give us a formula for computing vi given vi−1 for
every row except the first. In the first row, we put the speed with which we
enter the straight, which is an input to the problem. We get:

vi = vi−1 + ∆tF/m. (5)

We label another column distance, and we call the distance value in the
i-th row xi. Just as acceleration is the rate of change of velocity, so velocity
is the rate of change of distance over time. Just as before, then, we may
write:

vi =
xi − xi−1

∆t
. (6)

Solved for xi, this is:
xi = xi−1 + ∆tvi. (7)

Equation 7 gives us a formula for calculating the distance for any time
given the previous distance and the velocity calculated by equation 5. Physi-
cists would say that we have a scheme for integrating the equations of motion.

A small detail is missing: what is the force, F? Everything to this point
is kinematic. The real modeling starts now with formulas for calculating the
force. For this, we will draw on all the previous articles in this series. Let’s
label another column force, and a few more with drag, rolling resistance,
engine torque, engine rpm, wheel rpm, trans gear ratio, drive ratio, wheel
torque, and drive force. As you can see, we are going to derive a fairly
complete, if not accurate, model of accelerating down the straight. We need
a few constants:
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CONSTANT SYMBOL EXAMPLE VALUE
rear end ratio R 3.07
density of air ρ 0.0025 slugs/ft3

coeff. of drag Cd 0.30
frontal area A 20 ft2

wheel diameter d 26 in = 2.167 ft
roll resist factor rr 0.696 lb/(ft/sec)
car mass m 100 slug
first gear ratio g1 2.88
second gear ratio g2 1.91
third gear ratio g3 1.33
fourth gear ratio g4 1.00

and a few variables:

VARIABLE SYMBOL EXAMPLE VALUE
engine torque TE 330 ft-lbs
drag Fd 45 lbs
rolling resistance Fr 54 lbs
engine rpm E 4000
wheel rpm W 680
wheel torque TW 1930 ft-lbs
wheel force FW 1780 lbs
net force F 1681 lbs

All the example values are for a late model Corvette. Slugs are the English
unit of mass, and 1 slug weighs about 32.1 lbs at sea level (another manifes-
tation of F = ma, with F in lbs, m in slugs, and a being the acceleration of
gravity, 32.1 ft/sec2).

The most basic modeling equation is that the force we can use for forward
acceleration is the propelling force transmitted through the wheels minus
drag and rolling resistance:

F = FW − Fd − Fr. (8)

The force of drag we get from Part 6:

Fd =
1

2
CdAρv

2
i . (9)

Note that to calculate the force at step i, we can use the velocity at step i.
This force goes into calculating the acceleration at step i, which is used to
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calculate the velocity and distance at step i+ 1 by equations 5 and 7. Those
two equations represent the only ‘backward references’ we need. Thus, the
only inputs to the integration are the initial distance, 0, and the entrance
velocity, v0.

The rolling resistance is approximately proportional to the velocity:

Fr = rrvi = 0.696v1. (10)

This approximation is probably the weakest one in the model. I derived it
by noting from a Corvette book that 8.2 hp were needed to overcome rolling
resistance at 55 mph. I have nothing else but intuition to go on for this
equation, so take it with a grain of salt.

Finally, we must calculate the forward force delivered by the ground to
the car by reaction to the rearward force delivered to the ground via the
engine and drive train:

FW =
TERgk
d/2

. (11)

This equation simply states that we take the engine torque multiplied by the
rear axle ratio and the transmission drive ratio in the k-th gear, which is
the torque at the drive wheels, TW , and divide it by the radius of the wheel,
which is half the diameter of the wheel, d.

To calculate the forward force, we must decide what gear to be in. The
logic we use to do this is the following: from the velocity, we can calculate
the wheel rpm:

W = 60
sec

min

vi
πd
. (12)

From this, we know the engine rpm:

E = WRgk. (13)

At each step of integration, we look at the current engine rpm and ask “is
it past the torque peak of the engine?” If so, we shift to the next highest
gear, if possible. Somewhat arbitrarily, we assume that the torque peak is at
4200 rpm. To keep things simple, we also make the optimistic assumption
that the engine puts out a constant torque of 330 ft-lbs. To make the model
more realistic, we need merely look up a torque curve for our engine, usually
expressed as a function of rpm, and read the torque off the curve at each
step of the integration. The current approximation is not terrible however;
it merely gives us artificially good times and speeds. Another important
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Table 1: Exit speeds and times for several entrance speeds

200 ft 500 ft
straight straight

Entrance Exit Exit
speed speed Time speed Time
(mph) (mph) (sec) (mph) (sec)
25 61.51 2.972 81.12 5.811
27 61.77 2.916 81.51 5.748
29 62.15 2.845 82.02 5.676
31 62.34 2.793 82.19 5.599
35 63.18 2.691 82.78 5.472
40 64.65 2.548 83.49 5.282
45 66.85 2.392 84.68 5.065
50 69.27 2.261 85.83 4.875

improvement on the logic would be to check whether the wheels are spinning,
i.e. , that acceleration is less than about 1

2
G, and to ‘lift off the gas’ in that

case.
We have all the ingredients necessary to calculate how much time it takes

to cover a straight given an initial speed. You can imagine doing the calcula-
tions outlined above by hand on columnar paper, or you can check my results
(below) by programming them up in a spreadsheet program like Lotus 1-2-3
or Microsoft Excel. Eventually, of course, if you follow this series, you will
see these equations again as we write our Scheme program for simulating car
dynamics. Integrating the equations of motion by hand will take you many
hours. Using a spreadsheet will take several hours, too, but many less than
integrating by hand.

To illustrate the process, we show below the times and exit speeds for a
200 foot straight, which is a fairly long one in autocrossing, and a 500 foot
straight, which you should only see on race tracks. We show times and speeds
for a variety of speeds entering the straight from 25 to 50 mph in Table 1.
The results are also summarized in the two plots, Figures 1 and 2.

The notable facts arising in this analysis are the following. The time
difference resulting from entering the 200’ straight at 27 mph rather than
25 mph is about 6 hundredths. Frankly, not as much as I expected. The
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time difference between entering at 31 mph over 25 mph is about 2 tenths,
again less than I would have guessed. The speed difference at the end of the
straight between entering at 25 mph and 50 mph is only 8 mph, a result of the
fact that the car labors against friction and higher gear ratios at high speeds.
It is also a consequence of the fact that there is so much torque available at
25 mph in low gear that the car can almost make up the difference over the
relatively short 200’ straight. In fact, on the longer 500’ straight, the exit
speed difference between entering at 25 mph and 50 mph is not even 5 mph,
though the time difference is nearly a full second.

This analysis would most likely be much more dramatic for a car with
less torque than a Corvette. In a Corvette, with 330 ft-lbs of torque on tap,
the penalty for entering a straight slower than necessary is not so great as it
would be in a more typical car, where recovering speed lost through timidity
or bad cornering is much more difficult.

Again, the analysis can be improved by using a real torque curve and by
checking whether the wheels are spinning in lower gears.



Part 10

Grip Angle
In many ways, tire mechanics is an unpleasant topic. It is shrouded in un-
certainty, controversy, and trade secrecy. Both theoretical and experimental
studies are extremely difficult and expensive. It is probably the most uncon-
trollable variable in racing today. As such, it is the source of many highs and
lows. An improvement in modeling or design, even if it is found by lucky
accident, can lead to several years of domination by one tire company, as
with BFGoodrich in autocrossing now. An unfortunate choice of tire by a
competitor can lead to frustration and a disastrous hole in the budget.

This month, we investigate the physics of tire adhesion a little more deeply
than in the past. In Parts 2, 4, and 7, we used the simple friction model given
by F ≤ µW , where F is the maximum traction force available from a tire; µ,
assumed constant, is the coefficient of friction; and W is the instantaneous
vertical load, or weight, on a tire. While this model is adequate for a rough,
intuitive feel for tire behavior, it is grossly inadequate for quantitative use,
say, for the computer program we began in Part 8 or for race car engineering
and set up.

I am not a tire engineer. As always, I try to give a fresh look at any topic
from a physicist’s point of view. I may write things that are heretical or even
wrong, especially on such a difficult topic as tire mechanics. I invite debate
and corrections from those more knowledgeable than I. Such interaction is
part of the fun of these articles for me.

I call this month’s topic ‘grip angle.’ The grip angle is a quantity that
captures, for many purposes, the complex and subtle mechanics of a tire.
Most writers call this quantity ‘slip angle.’ I think this name is misleading
because it suggests that a tire works by slipping and sliding. The truth is
more complicated. Near maximum loads, the contact patch is partly gripping
and partly slipping. The maximum net force a tire can yield occurs at the
threshold where the tire is still gripping but is just about to give way to
total slipping. Also, I have some difficulties with the analyses of slip angle in
the literature. I will present these difficulties in these articles, unfortunately,
probably without resolution. For these reasons, I give the quantity a new
name.

A tire is an elastic or deformable body. It delivers forces to the car by
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stretching, compressing, and twisting. It is thus a very complex sort of spring
with several different ways, or modes, of deformation. The hypothetical tire
implied by F ≤ µW with constant µ would be a non-elastic tire. Anyone
who has driven hard tires on ice knows that non-elastic tires are basically
uncontrollable, not just because µ is small but because regular tires on ice
do not twist appreciably.

The first and most obvious mode of derformation is radial. This defor-
mation is along the radius of the tire, the line from the center to the tread.
It is easily visible as a bulge in the sidewall near the contact patch, where
the tire touches the ground. Thus, radial compression varies around the
circumference.

Second is circumferential deformation. This is most easily visble as wrin-
kling of the sidewalls of drag tires. These tires are intentionally set up to
deform dramatically in the circumferential direction.

Third is axial deformation. This is a deflection that tends to pull the tire
off the (non-elastic) wheel or rim.

Last, and most important for cornering, is torsional deformation. This is
a difference in axial deflection from the front to the back of the contact patch.
Fundamentally, radial, circumferential, and axial deformation furnish a com-
plete description of a tire. But it is very useful to consider the differences in
these deflections around the circumference.

Let us examine exactly how a tire delivers cornering force to the car. We
can get a good intuition into the physics with a pencil eraser. Get a block
eraser, of the rectangular kind like ‘Pink Pearl’ or ‘Magic Rub.’ Stand it up
on a table or desk and think of it as a little segment of the circumference of
a tire. Think of the part touching the desk as the contact patch. Grab the
top of the eraser and think of your hand as the wheel or rim, which is going
to push, pull, and twist on the segment of tire circumference as we go along
the following analysis.

Consider a car traveling at speed v in a straight line. Let us turn the
steering wheel slightly to the right (twist the top of the eraser to the right).
At the instant we begin turning, the rim (your hand on the eraser), at a cir-
cumferential position just behind the contact patch, pushes slightly leftward
on the bead of the tire. Just ahead of the contact patch, likewise, the rim
pulls the bead a little to the right. The push and pull together are called a
force couple. This couple delivers a torsional, clockwise stress to the inner
part of the tire carcass, near the bead. This stress is communicated to the
contact patch by the elastic material in the sidewalls (or the main body of the
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eraser). As a result of turning the steering wheel, therefore, the rim twists
the contact patch clockwise.

The car is still going straight, just for an instant. How are we going
to explain a net rightward force from the road on the contact patch? This
net force must be there, otherwise the tire and the car would continue in a
straight line by Newton’s First Law.

Consider the piece of road just under the contact patch at the instant
the turn begins. The rubber particles on the left side of the patch are going
a little bit faster with respect to the road than the rest of the car and the
rubber particles on the right side of the patch are going a little bit slower
than the rest of the car. As a result, the left side of the patch grips a little
bit less than the right. The rubber particles on the left are more likely to
slide and the ones on the right are more likely to grip. Thus, the left edge
of the patch ‘walks’ a little bit upward, resulting in a net clockwise twisting
motion of the patch. The torsional stress becomes a torsional motion. As this
motion is repeated from one instant to the next, the tire (and the eraser—I
hope you are still following along with the eraser) walks continuosly to the
right.

The better grip on the right hand side of the contact patch adds up to a
net rightward force on the tire, which is transmitted back through the sidewall
to the car. The chassis of the car begins to yaw to the right, changing the
direction of the rear wheels. A torsional stress on the rear contact patches
results, and the rear tires commence a similar ‘walking’ motion.

The wheel (your hand) is twisted more away from the direction of the
car than is the contact patch. The angular difference between the direction
the wheel is pointed and the direction the tire walks is the grip angle. All
quantities of interest in tire mechanics—forces, friction coefficients, etc., are
conventionally expressed as functions of grip angle.

In steady state cornering, as in sweepers, an understeering car has larger
grip angles in front, and an oversteering car has larger grip angles in the rear.
How to control grip angles statically with wheel alignment and dynamically
with four-wheel steering are subjects for later treatment.

The greater the grip angle, the larger the cornering force becomes, up to
a point. After this point, greater grip angle delivers less force. This point
is analogous to the idealized adhesive limit mentioned earlier in this series.
Thus, a real tire behaves qualitatively like an ideal tire, which grips until
the adhesive limit is exceeded and then slides. A real tire, however, grips
gradually better as cornering force increases, and then grips gradually worse
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as the limit is exceeded.
The walking motion of the contact patch is not entirely smooth, or in

otherwords, somewhat discrete. Individual blocks of rubber alternately grip
and slide at high frequency, thousands of times per second. Under hard
cornering, the rubber blocks vibrating on the road make an audible squal-
ing sound. Beyond the adhesive limit, squealing becomes a lower frequency
sound, ‘squalling,’ as the point of optimum efficiency of the walking process
is bypassed.

There is a lot more to say on this subject, and I admit that my first at-
tempts at a mathematical analysis of grip angle and contact patch mechanics
got bogged down. However, I think we now have an intuitive, conceptual ba-
sis for better modeling in the future.

Speaking of the future, summarize briefly the past of and plans for the
Physics of Racing series. The following overlapping threads run through it:

Tire Physics concerns adhesion, grip angle, and elastic modeling. This has
been covered in Parts 2, 4, 7, and 10, and will be covered in several
later parts.

Car Dynamics concerns handling, suspension movement, and motion of a
car around a course; has been covered in Parts 1, 4, 5, and 8 and will
continue.

Drive Line Physics concerns modeling of engine performance and acceler-
ation. Has been covered in Parts 3, 6, and 9 and will also continue.

Computer Simulation concerns the design of a working program that cap-
tures all the physics. This is the ultimate goal of the series. It was
begun in Part 8 and will eventually dominate discussion.

The following is a list of articles that have appeared so far:

1. Weight Transfer

2. Keeping Your Tires Stuck to the Ground

3. Basic Calculations

4. There is No Such Thing as Centrifugal Force

5. Introduction to the Racing Line
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6. Speed and Horsepower

7. The Circle of Traction

8. Simulating Car Dynamics with a Computer Program

9. Straights

10. Grip Angle

and the following is a tentative list of articles I have planned for the near
future (naturally, this list is ‘subject to change without notice’):

Springs and Dampers, presenting a detailed model of suspension move-
ment (suggested by Bob Mosso)

Transients, presenting the dynamics of entering and leaving corners, chi-
canes, and slaloms (this one suggested by Karen Babb)

Stability, explaining why spins and other losses of control occur

Smoothness, exploring what, exactly, is meant by smoothness

Modeling Car Data in a computer program; in several articles

Modeling Course Data in a computer program; also in several articles

In practice, I try to keep the lengths of articles about the same, so if a
topic is getting too long (and grip angle definitely did), I break it up in to
several articles.



Part 11

Braking
I was recently helping to crew Mark Thornton’s effort at the Silver State
Grand Prix in Nevada. Mark had built a beautiful car with a theoretical top
speed of over 200 miles per hour for the 92 mile time trial from Lund to Hiko.
Mark had no experience driving at these speeds and asked me as a physicist
if I could predict what braking at 200 mph would be like. This month I
report on the back-of-the-envelope calculations on braking I did there in the
field.

There are a couple of ways of looking at this problem. Brakes work by
converting the energy of motion, kinetic energy, into the energy of heat in the
brakes. Converting energy from useful forms (motion, electrical, chemical,
etc.) to heat is generally called dissipating the energy, because there is no
easy way to get it back from heat. If we assume that brakes dissipate energy
at a constant rate, then we can immediately conclude that it takes four times
as much time to stop from 200 mph as from 100 mph. The reason is that
kinetic energy goes up as the square of the speed. Going at twice the speed
means you have four times the kinetic energy because 4 = 22. The exact
formula for kinetic energy is 1

2
mv2, where m is the mass of an object and

v is its speed. This was useful to Mark because braking from 100 mph was
within the range of familiar driving experience.

That’s pretty simple, but is it right? Do brakes dissipate energy at a
constant rate? My guess as a physicist is ‘probably not.’ The efficiency
of the braking process, dissipation, will depend on details of the friction
interaction between the brake pads and disks. That interaction is likely to
vary with temperature. Most brake pads are formulated to grip harder when
hot, but only up to a point. Brake fade occurs when the pads and rotors
are overheated. If you continue braking, heating the system even more, the
brake fluid will eventually boil and there will be no braking at all. Brake
fluid has the function of transmitting the pressure of your foot on the pedal
to the brake pads by hydrostatics. If the fluid boils, then the pressure of your
foot on the pedal goes into crushing little bubbles of gaseous brake fluid in
the brake lines rather than into crushing the pads against the disks. Hence,
no brakes.

We now arrive at the second way of looking at this problem. Let us assume
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Starting Starting Time to Distance to Distance to
Speed (mph) Speed (fps) brake (sec) brake (feet) brake (yards)

30 44 1.37 30.16 10.05
60 88 2.74 120.62 40.21
90 132 4.11 271.40 90.47

120 176 5.48 482.49 160.83
150 220 6.85 753.89 251.30
180 264 8.22 1085.61 361.87
210 308 9.60 1477.63 492.54

Table 2: Times and distances for braking to zero from various speeds.

that we have good brakes, so that the braking process is limited not by the
interaction between the pads and disks but by the interaction between the
tires and the ground. In other words, let us assume that our brakes are better
than our tires. To keep things simple and back-of-the-envelope, assume that
our tires will give us a constant deceleration of

1G ≡ a = 32.1
feet

sec2

The time t required for braking from speed v can be calculated from:

t = v/a

which simply follows from the definition of constant acceleration. Given the
time for braking, we can calculate the distance x, again from the definitions
of acceleration and velocity:

x = vt− 1

2
at2

Remembering to be careful about converting miles per hour to feet per sec-
ond, we arrive at the numbers in Table 1.

We can immediately see from this table (and, indeed, from the formulas)
that it is the distance, not the time, that varies as the square of the starting
speed v. The braking time only goes up linearly with speed, that is, in simple
proportion.

The numbers in the table are in the ballpark of the braking figures one
reads in published tests of high performance cars, so I am inclined to believe
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that the second way of looking at the problem is the right way. In other
words, the assumption that the brakes are better than the tires, so long as
they are not overheated, is probably right, and the assumption that brakes
dissipate energy at a constant rate is probably wrong because it leads to the
conclusion that braking takes more time than it actually does.

My final advice to Mark was to leave lots of room. You can see from the
table that stopping from 210 mph takes well over a quarter mile of very hard,
precise, threshold braking at 1G!



Part 12

CyberCar, Every Racer’s
DWIM Car?
The cybernetic DWIM car is coming. DWIM stands for “Do What I Mean.”2

It is a commonplace term in the field of Human-machine Interfaces, and
refers to systems that automatically interpret the user’s intent from his or
her inputs.

Cybernetics (or at least one aspect of it) is the science of unifying humans
and machines. The objective of cybernetics is usually to amplify human capa-
bility with ‘intelligent’ machines, but sometimes the objective is the reverse.
Most of the work in cybernetics has been under the aegis of defense, for build-
ing advanced tanks and aircraft. There is a modest amount of cybernetics in
the automotive industry, as well. Anti-lock Braking (ABS), Acceleration Slip
Reduction (ASR), Electronic Engine Management, and Automatic Traction
Control (ATC) are cybernetic DWIM systems—of a kind—already in produc-
tion. They all make ‘corrections’ on the driver’s input based on an assumed
intention. Steer-by-wire, Continuously Variable Transmissions (CVT), and
active suspensions are on the immediate horizon. All these features are part
of a distinct trend to automate the driving experience. This month, we take
a break from hard physics to look at the better and the worse of increased
automation, and we look at one concept of the ultimate result, CyberCar.

Among the research directions in cybernetics are advanced sensors for
human inputs. One of the more incredible is a system that reads brain waves
and figures out what a fighter pilot wants to do directly from patterns in the
waves.

A major challenge in the fighter cockpit is information overload. Pilots
have far too many instruments, displays, horns, buzzers, radio channels, and
idiot lights competing for their attention. In stressful situations, such as high
speed dogfights, the pilot’s brain simply ignores inputs beyond its capacity,
so the pilot may not hear a critical buzzer or see a critical warning light.
In the ‘intelligent cockpit,’ however, the pilot consciously suppresses certain
displays and auditory channels, thus reducing sensory clutter. By the same
token, the intelligent cockpit must be able to override the pilot’s choices and

2and the word play on ‘dream’ was too much to resist.
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to put up critical displays and to sound alarms in emergencies. In the reduced
clutter of the cockpit, then, it is much less likely that a pilot will miss critical
information.

How does the pilot select the displays that he3 wants to see? The pilot
cannot afford the time to scroll through menus like those on a personal com-
puter screen or hunt-and-peck on a button panel like that on an automatic
bank teller machine.

There are already sensors that can read a pilot’s brain waves and antici-
pate what he wants to look at next. Before the pilot even consciously knows
that he wants to look at a weapon status display, for example, the cybernetic
system can infer the intention from his brain waves and pop up the display. If
he thinks it is time to look at the radar, before he could speak the command,
the system reads his brain waves, pops up the radar display, and puts away
the weapon status display.

How does it work? During a training phase, the system reads brain waves
and gets explicit commands through a button panel. The system analyzes
the brain waves, looking for certain unique features that it can associate with
the intention (inferred from the command from the button panel) to see the
radar display, and other unique features to associate with the intention to
look at weapon status, and so on. The system must be trained individually
for each pilot. Later, during operation, whenever the system sees the unique
brain wave patterns, it ‘knows’ what the pilot wants to do.

The implications of technology like this for automobiles is amazing. Al-
ready, things like ABS are a kind of rudimentary cybernetics. When a driver
stands all over the brake pedal, it is assumed that his intention is to stop,
not to skid. The ABS system ‘knows,’ in a manner of speaking, the driver’s
intention and manages the physical system of the car to accomplish that
goal. So, instead of being a mere mechanical linkage between your foot and
the brakes, the brake pedal becomes a kind of intentional, DWIM control.
Same goes for traction control and ASR. When the driver is on the gas, the
system ‘knows’ that he wants to go forward, not to spin out or do doughnuts.
In the case of TC, the system regulates the torque split to the drive wheels,
whether there be two or four. In the case of ASR, the system backs off the
throttle when there is wheel spin. Cybernetics again.

ABS, TC, and ASR exist now. What about the future? Consider steer-
by-wire. CyberCar, the total cybernetic car, infers the driver’s intended

3Everywhere, ‘he’ means ‘he or she,’ ‘his’ means ‘his or her,’ etc.
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direction from the steering wheel position. It makes corrections to the ac-
tual direction of the steered wheels and to the throttle and brakes much
more quickly and smoothly than any driver can do. Coupled with slip an-
gle4 sensors[1] and inertial guidance systems, perhaps based on miniaturized
laser/fiber optic gyros (no moving parts), cybernetic steering, throttle, and
brake controls will make up a formidable racing car that could drive a course
in practically optimal fashion given only the driver’s desired racing line.

In an understeering situation, when a car is not turning as much as de-
sired, a common driver mistake is to turn the steering wheel more. That is
a mistake, however, only because the driver is treating the steering wheel
as an intentional control rather than the physical control it actually is. In
CyberCar, however, the steering wheel is an intentional control. When the
driver adds more lock in a corner, CyberCar ‘knows’ that the driver just
wants more steering. Near the limits of adhesion, CyberCar knows that the
appropriate physical reaction is, in fact, some weight transfer to the front,
either by trailing throttle or a little braking, and a little less steering wheel
lock. When the fronts hook up again, CyberCar can immediately get back
into the throttle and add a little more steering lock, all the while tracking the
driver’s desires through the intentional steering wheel in the cockpit. Simi-
larly, in an oversteer situation, when the driver gives opposite steering lock,
CyberCar knows what to do. First, CyberCar determines whether the con-
dition is trailing throttle oversteer (TTO) or power oversteer (PO). It can do
this by monitoring tire loads through suspension deflection and engine torque
output over time. In TTO, CyberCar adds a little throttle and countersteers.
When the drive wheels hook up again, it modulates the throttle and dials
in a little forward lock. In PO, CyberCar gently trails off the throttle and
countersteers. All the while, CyberCar monitors driver’s intentional inputs
and the physical status of the car at the rate of several kilohertz (thousands
of times per second).

The very terms ‘understeer’ and ‘oversteer’ carry cybernetic implication,
for these are terms of intent. Understeer means the car is not steering as
much as wanted, and oversteer means it is steering too much.

The above description is within current technology. What if we get really
fantastic? How about doing away with the steering wheel altogether? Cy-
berCar, version II, knows where the driver wants to go by watching his eyes,
and it knows whether to accelerate or brake by watching brain waves. With

4Also known as grip angle; see Part 10 of this series.
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Virtual Reality and teleoperation, the driver does not even have to be in-
side the car. The driver, wearing binocular video displays that control incar
cameras (or even synthetic computer graphics) via head position, sits in a
virtual cockpit in the pits.

Now we must ask how much cybernetics is desirable? Autocrossing is,
largely, a pure driver skill contest. Wheel-to-wheel racing adds racecraft—
drafting, passing, deception, etc.—to car control skills. Does it not seem that
cybernetics eliminates driver skill as a factor by automating it? Is it not just
another way for the ‘haves’ to beat the ‘have-nots’ by out-spending them?
Drivers who do not have ABS have already complained that it gives their
competition an unfair advantage. On the other hand, drivers who do have it
have complained that it reduces their feel of control and their options while
braking. I think they doth protest too much.

In the highest forms of racing, where money is literally no object, cyber-
netics is already playing a critical role. The clutchless seven speed transmis-
sions of the Williams/Renault team dominated the latter half of the 1991
Formula 1 season. But for some unattributable bad luck, they would have
won the driver’s championship and the constructor’s cup. Carrol Smith,
noted racing engineer, has been predicting for years that ABS will show up
in Formula 1 as soon as systems can be made small and light enough[2]. It
seems inevitable to me that cybernetic systems will give the unfair advantage
to those teams most awash in money. However, autocrossers, club racers, and
other grass roots competitors will be spared the expense, and the experience
of being relieved of the enjoyment of car control, for at least another decade
or two.
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Colophon

Brian Beckman began publishing the Physics of Racing series in June 1990
as a series of articles in his sports car club’s newsletter. The articles were
originally formatted in LATEX5 and typeset using TEXtures on the Apple
Macintosh computer.

The articles have been widely distributed as Adobe PostScript files for
many years, and were converted to HTML by Robert Keller circa 1995 for
display on the World Wide Web. They can be seen on Keller’s home page at
http://members.home.net/rck/phor/.

In August 1999, I undertook a conversion of the Physics of Racing series
to Adobe Acrobat PDF format. The original LATEX sources were converted
to the newer LATEX 2ε format, and a PDF file was generated using the pdftex
package developed by Han The Thanh at Masaryk University, Czech Repub-
lic. Graphics were sourced from the GIF files in Keller’s Web pages, and
converted to PDF and PNG formats using the ImageMagick converter by
John Cristy and gif2png by The PNG Development Group.
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5LATEX is a collection of macros for the TEX typesetting system developed by Professor
Donald Knuth of Stanford University. TEX is a trademark of the American Mathematical
Society.


